Math 323 - Formal Mathematical Reasoning and Writing
 Problem Session
 Wednesday, 4/22/15

Images and Preimages

1. ${ }^{1}$ Let $f: A \rightarrow b$ be an injective function. Then if S_{i} with $i \in \mathcal{I}$ is a family of sets where $\forall i \in \mathcal{I}, S_{i} \subseteq A$, then

$$
f\left(\bigcap_{i \in \mathcal{I}} S_{i}\right)=\bigcap_{i \in I} f\left(S_{i}\right)
$$

Infinity!!

1. Let L be the line $y=r x$, where r is a rational number. Let A be the set of all points (a, b) such that $a, b \in \mathbb{Z}$ and (a, b) is on the line L. Prove that A is infinite.
2. Can you think of a bijective function f with $f: \mathbb{R} \rightarrow\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$? What does this tell you about the cardinality of the set $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$? Can you edit the function you came up with to provide a bijection $f_{1}: \mathbb{R} \rightarrow(0,1)$?
3. Prove that the \mathbb{N} has the same cardinality as $\mathbb{N} \times \mathbb{N}$ by describing a bijection between the two sets.
[^0]
[^0]: ${ }^{1}$ Madden §12.3 \#6

